Fibonacci-Like Polynomials and Some Properties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Generalized Fibonacci Polynomials

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.

متن کامل

Generalized Bivariate Fibonacci-Like Polynomials and Some Identities

In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...

متن کامل

On some properties on bivariate Fibonacci and Lucas polynomials

In this paper we generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations.

متن کامل

On Some Properties of Bivariate Fibonacci and Lucas Polynomials

In this paper we generalize to bivariate Fibonacci and Lucas polynomials, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate bases are families of integers satisfying remarkable recurrence relations.

متن کامل

On the properties of generalized Fibonacci like polynomials

The Fibonacci polynomial has been generalized in many ways,some by preserving the initial conditions,and others by preserving the recurrence relation.In this article,we study new generalization {Mn}(x ), with initial conditions M0(x ) = 2 and M1(x ) = m (x ) + k (x ), which is generated by the recurrence relation Mn+1(x ) = k (x )Mn (x )+Mn−1(x ) for n ≥ 2, where k (x ), m (x ) are polynomials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Mathematical Sciences

سال: 2013

ISSN: 2307-454X

DOI: 10.14419/ijams.v1i3.900